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ABSTRACT
An open research question is how to define a useful metric

on SE(n) with respect to (1) the choice of coordinate frames and
(2) the units used to measure linear and angular distances. We
present two techniques for approximating elements of the spe-
cial Euclidean group SE(n) with elements of the special orthog-
onal group SO(n+1). These techniques are based on the singular
value and polar decompositions (denoted as SVD and PD respec-
tively) of the homogeneous transform representation of the ele-
ments of SE(n). The projection of the elements of SE(n) onto
SO(n+1) yields hyperdimensional rotations that approximate the
rigid-body displacements (hence the term projection metric. A
bi-invariant metric on SO(n+1) may then be used to measure the
distance between any two spatial displacements. The results are
PD and SVD based projection metrics on SE(n). These metrics
have applications in motion synthesis, robot calibration, motion
interpolation, and hybrid robot control.

INTRODUCTION
Simply stated a metric measures the distance between two

points in a set. There exist numerous useful metrics for defining
the distance between two points in Euclidean space, however,
defining similar metrics for determining the distance between
two locations of a finite rigid body is still an area of ongoing re-
search, see [22], [14], [2], [26], [23], [21], [8], [11], [30], [4], [7],
and [1]. In the cases of two locations of a finite rigid body in
ddress all correspondence to this author.
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either SE(3) (spatial locations) or SE(2) (planar locations) any
metric used to measure the distance between the locations yields
a result which depends upon the chosen reference frames, see [2]
and [23]. However, a metric that is independent of these choices,
referred to as being bi-invariant, is desirable. It is well known
that for the specific case of orienting a finite rigid body in SO(n)
bi-invariant metrics do exist. For example, Ravani and Roth [27]
defined the distance between two orientations of a rigid body in
space as the magnitude of the difference between the associated
quaternions and a proof that this metric is bi-invariant may be
found in [21].

In [21] and [18] Larochelle and McCarthy presented an al-
gorithm for approximating displacements in SE(2) with orienta-
tions in SO(3). By utilizing the metric of Ravani and Roth [27]
they arrived at an approximate bi-invariant metric for planar loca-
tions in which the error induced by the spherical approximation
is of the order 1

R2 , where R is the radius of the approximating
sphere. Their algorithm for a projection metric is based upon an
algebraic formulation which utilizes Taylor series expansions of
sine() and cosine() terms in homogeneous transforms, see [24].
Etzel and McCarthy [8] extended this work to spatial displace-
ments by using orientations in SO(4) to approximate locations
in SE(3). Their algorithm is also based upon Taylor series ex-
pansions of sine() and cosine() terms, see [10], and here too the
error is of the order 1

R2 .

This paper presents an efficient alternative approach for
defining projection metrics on SE(n) to those presented by
Larochelle and McCarthy [21] and Etzel and McCarthy [8].
Copyright c© 2005 by ASME



Here, the underlying geometrical motivations are the same- to
approximate displacements with hyperspherical rotations. How-
ever, an alternative approach for reaching the same goal is pre-
sented. We utilize the singular value and polar decompositions to
yield projections of planar and spatial finite displacements onto
hyperspherical orientations.

PROJECTING SE(n) ONTO SO(n+1)
First, we review how spherical displacements may be used

to approximate planar displacements with some finite error asso-
ciated with the radius R of the sphere, see [15] and [21]. This
approach is based upon the work of McCarthy [24] in which he
examined spherical and 3-spherical motions with instantaneous
invariants approaching zero and showed that these motions may
be identified with planar and spatial motions, respectively.

Recall that a general planar displacement (a,b,α) in the
z = R plane (an element of SE(2)) may be expressed as a ho-
mogeneous coordinate transformation,
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Now consider a general spherical displacement in which the pa-
rameters used to describe the displacement are the three angles
longitude(θ), latitude(φ), and roll(ψ), see Fig. 1. Using these pa-
rameters a general spherical displacement may be written as,
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(2)
We now define â = Rθ as the longitudinal arc length and b̂ = Rφ
as the latitudinal arc length. If we consider displacements in the
z = R plane and expand the trigonometric functions sine() and
cosine() using a Taylor series about 0 and substitute the angles θ
and φ from above into the expansions then we may rewrite Eq. 2
as,
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â2 + b̂2)

](
x
y
1

)

+O(
1
R2 ). (3)

Note that the first term of Eq. 3 is identical to Eq. 1 and we may
approximate planar displacements (a,b,ψ) with some finite error
2

Figure 1. Planar Case: SE(2)⇒ SO(3)

that is associated with the radius of the sphere. From Eq. 3 we
make the following identifications: â ⇒ a, b̂ ⇒ b, and, ψ ⇒ α.
Using the definition of the arc lengths and the radius of the sphere
we obtain the three angles; θ, φ, and ψ, which describe the spher-
ical displacement on the sphere of radius R that approximates the
prescribed planar displacement: θ = a

R , φ = b
R , and, ψ = α.

Etzel and McCarthy [8] extended the above methodology to
spatial displacements by using orientations in SO(4) to approxi-
mate locations in SE(3). They showed that a 4x4 homogeneous
transform representation of SE(3) can be approximated by a pure
rotation [D] in SO(4),

[D] = [J(α,β,γ)][K(θ,φ,ψ)] (4)

where,

J(α,β,γ)]=




cosα 0 0 sinα
−sinβsinα cosβ 0 sinβcosα

−sinγcosβsinα −sinγsinβ cosγ sinγcosβcosα
−cosγcosβsinα −sinβcosγ −sinγ cosγcosβcosα




and,

K(θ,φ,ψ)] =




0
[As] 0

0
0 0 0 1


 .

The angles α, β and γ are defined as follows: tan(α) = dx
R ,

tan(β) = dy
R , and tan(γ) = dz

R where dx, dy, and dz are the com-
ponents of the translation vector d of the displacement and R is
the radius of the hypersphere. A conceptual representation, anal-
ogous to Fig. 1, can be seen in Fig. 2.
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Figure 2. Spatial Case: SE(3)⇒ SO(4) (figure from [24])

THE SVD BASED PROJECTION
The SVD-based projection metric also uses hyperdimen-

sional rotations to approximate displacements. However, this
technique uses products derived from the singular value decom-
position (SVD) of the homogeneous transform to realize the pro-
jection of SE(n-1) onto SO(n). The general approach here is
based upon preliminary works reported in [5, 19, 20].

Consider the space of (n× n) matrices as shown in Fig. 3.
Let [T ] be a (n× n) homogeneous transform that represents an
element of SE(n-1). Note that [T ] defines a point in Rn2

. [A] is the
desired element of SO(n) nearest [T ] when it lies in a direction
orthogonal to the tangent plane of SO(n) at [A].

Figure 3. General Case: SE(n-1)⇒ SO(n)

The following theorem, based upon related works by Han-
3

son and Norris [13] provides the foundation for the projection,

Theorem 0.1. Given any (n× n) matrix [T ] the closest el-
ement of SO(n) is given by: [A] = [U ][V ]T where [T ] =
[U ][diag(s1,s2, . . . ,sn)][V ]T is the SVD of [T ].

Shoemake and Duff [29] prove that matrix [A] satisfies the fol-
lowing optimization problem: Minimize: ‖[A]− [T ]‖2

F subject to:
[A]T [A]− [I] = [0], where ‖[A]− [T ]‖2

F = ∑i, j(ai j − ti j)2 is used
to denote the Frobenius norm. Since [A] minimizes the Frobe-
nius norm in Rn2

it is the element of SO(n) that lies in a direction
orthogonal to the tangent plane of SO(n) at [R]. Hence, [A] is the
closest element of SO(n) to [T ]. Moreover, for full rank matri-
ces the SVD is well defined and unique. We now restate Th. 0.1
with respect to the desired SVD based projection of SE(n-1) onto
SO(n).

Theorem 0.2. For [T ] ∈ SE(n-1) and [T ] =
[U ][diag(s1,s2, . . . ,sn)][V ]T if [A] = [U ][V ]T then [A] is the
unique element of SO(n) nearest [T ].

Recall that [T ], the homogenous representation of SE(n), is full
rank ( [25]) and therefore [A] exists, is well defined, and unique.

THE PD BASED PROJECTION
The polar decomposition (PD), though perhaps less known

than the SVD, is quite powerful and actually provides the foun-
dation for the SVD. The polar decomposition theorem of Cauchy
states that “a non-singular matrix equals an orthogonal matrix ei-
ther pre or post multiplied by a positive definite symmetric ma-
trix”, see [12]. With respect to our application, for [T ] ∈ SE(n-1)
its PD is [T ] = [P][Q], where [P] and [Q] are (n× n) matrices
such that [P] is orthogonal and [Q] is positive definite and sym-
metric. Recalling the properties of the SVD, the decomposition
of [T ] yields [U ][diag(s1,s2, . . . ,sn−1)][V ]T , where matrices [U ]
and [V ] are orthogonal and matrix [diag(s1,s2, . . . ,sn−1)] is pos-
itive definite and symmetric. Moreover, it is known that for full
rank square matrices that the polar decomposition and the singu-
lar value decomposition are related by: [P] = [U ][V ]T and [Q] =
[V ][diag(s1,s2, . . . ,sn−1)][V ]T , [9]. Hence, for [A] = [U ][V ]T we
have [A] = [P] and conclude that the polar decomposition yields
the same element of SO(n). We now restate Th. 0.2 with respect
to the desired PD based projection of SE(n-1) onto SO(n).

Theorem 0.3. If [T ] ∈ SE(n-1) and [T ] = [P][Q] then [P] is the
unique element of SO(n) nearest [T ].

COMPUTATIONAL ISSUES
Often, the evaluation of the singular value decomposition is

implemented in code by computing the eigenvalues and eigen-
vectors of the matrix since the singular values are the positive
square roots of the eigenvalues of [T ][T ]T and the columns of
Copyright c© 2005 by ASME



[U ] and [V ] are the normed eigenvectors of [T ][T ]T and [T ]T [T ]
respectively. However, we are computing the SVD of a homo-
geneous transform representing SE(n-1). The eigenvalue and
eigenvectors of SE(2) and SE(3) are well known and should be
exploited to facilitate the computations, see [25].

With regard to the PD, a simple and efficient iterative algo-
rithm exists for its evaluation. Dubrulle [6] provides an algorithm
that produces monotonic convergence in the Frobenius norm that
“. . . generally delivers an IEEE double-precision solution in∼ 10
or fewer steps”. A MatLab implementation of Dubrulle’s algo-
rithm is shown in Fig. 4.

Figure 4. Dubrulle’s PD Algorithm: MatLab Implementation

THE CHARACTERISTIC LENGTH
In order resolve the unit disparity between translations and

rotations we use a characteristic length to normalize the transla-
tional terms in the displacements. The characteristic length we
chose to use, based upon the investigations reported in [8, 21],
is R = 24L

π where L is the maximum translational component
in the set of displacements at hand. This characteristic length
is the radius of the hypersphere that approximates the transla-
tional terms by angular displacements that are ≤ 7.5(deg). It
was shown in [15] that this radius yields an effective balance
between translational and rotational displacement terms for pro-
jection metrics.

Finally, it is important to recall that both the SVD and PD
based projections of SE(n-1) onto SO(n) are coordinate frame
and unit dependent. This is true for all metrics on spatial and
planar displacements as no bi-invariant metric exists, see [2] and
[23]. Note however that these mappings project SE(n-1) onto
SO(n) and bi-invariant metrics do exist on SO(n).
4

ONE METRIC ON SO(n)
One useful and easily computed metric d on SO(n) follows.

Given two elements [A1] and [A2] of SO(n) we can define a metric
using the Frobenius norm as,

d = ‖[I]− [A2][A1]T‖F . (5)

It is straightforward to verify that this is a valid metric on SO(n),
see [28].

CASE STUDY-1
Consider a planar displacement (a,b,α) = (0,1,0). Its cor-

responding element of SE(2) is [T ] and we compute its projection
[A] onto SO(3) using either technique presented here and yield:

[T ] =




1 0 0
0 1 1
0 0 1


 (6)

and

[A] =




1.0 0.0 0.0
0.0 0.9979 0.0653
0.0 −0.0653 0.9979


 (7)

where R = 7.6394. It is illustrative to compute the axis of rotation
s = [−1.0 0.0 0.0]T and the angle of rotation η = 3.7440(deg)
associated with [A], see Fig. 5. Moreover, the longitude, latitude,
and roll angles of [A] are: θ = 0.0, φ = 3.7440(deg), and ψ = 0.0
as expected. Finally, from Eq. 5 we determine the magnitude
of this displacement with respect to the identity to be ‖[T ]‖ =
0.0924 .

CASE STUDY-2
Consider another planar displacement (a,b,α) = (1,1,45).

We proceed as in Case-1 and yield the following:

[T ] =




0.7071 −0.7071 1
0.7071 0.7071 1

0 0 1


 (8)

and

[A] =




0.7041 −0.7071 0.0652
0.7041 0.70714 0.0652
−0.0922 0.0 0.9957


 (9)
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Figure 5. Planar Case: SE(2)⇒ SO(3)

where R = 7.6394. Again, it is illustrative to compute
the angle and axis of rotation η = 45.29(deg) and s =
[−0.0459 0.1107 0.9928]T , see Fig. 1. Moreover, the longi-
tude, latitude, and roll angles associated with [A] are: θ = 3.75,
φ = 3.74, and ψ = 44.88(deg). Finally, from Eq. 5 we have
‖[T ]‖= 1.0891.

CASE STUDY-3
Consider a spatial displacement (dx,dy,dz,θ,φ,ψ) =

(1,2,3,10,30,75). We proceed as above and yield the follow-
ing:

[T ] =




0.1710 −0.9737 0.1540 1.0000
0.8365 0.2241 0.5000 2.0000
−0.5206 0.0403 0.8529 3.0000

0 0 0 1


 (10)

[A] =




0.1710 −0.9736 0.1495 0.0217
0.8364 0.2243 0.4982 0.0435
−0.5208 0.0406 0.8502 0.0652
−0.0061 0.0088 −0.0806 0.9967


 , (11)

where R = 22.9183 and from Eq. 5 we have ‖[T ]‖= 1.8750.

CONCLUSIONS
We have presented two projection metrics on SE(n). These

metrics are based on projections of SE(n) onto SO(n+1) that uti-
lize the singular value and polar decompositions of the homoge-
neous transform representations of SE(n). It was shown that both
methods yield the same projection that determines the element
5

of SO(n+1) nearest the given element of SE(n). Any bi-invariant
metric on SO(n+1) may then be used to measure the distance
between any two spatial displacements SE(n). The results are
PD and SVD based projection metrics on SE(n). These metrics
have applications in motion synthesis, robot calibration, motion
interpolation, and hybrid robot control.
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